Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Harrison, Rhett (Ed.)ABSTRACT Belowground resources are key determinants of seedling growth and survival in tropical forests. Nutrients and light may limit plant growth the most in tropical wet forests, whereas water may limit plant growth more in tropical dry forests. Nitrogen (N)‐fixing species play an important role in the nitrogen and carbon cycles across tropical dry forests. However, studies investigating the joint effects of water and nutrients on the physiology and performance of N‐fixing species are scarce. We implemented a full factorial shade house experiment that manipulated water and nutrients (NPK 20:20:20 and complete micronutrients) using eight tree species representing N‐fixing and non‐fixing tree species in the tropical dry forest of Costa Rica to determine: (1) How plant responses to water and nutrient availability vary between N‐fixing and non‐fixing tree species?; and (2) How nutrient and/or water availability influences seedling water‐ and nutrient‐use traits? We found that growth and physiological responses to water and nutrient addition depended directly on the capacity of species to fix atmospheric N2. N‐fixing species responded more strongly to nutrient addition, accumulating 67% more total biomass on average (approximately double that of non‐fixing taxa) and increasing average height growth rate by 41%. N‐fixing species accumulated more biomass without compromising water‐use efficiency, taking full advantage of the increased nutrient availability. Interestingly, results from our experiment show that increased water availability rarely influenced tropical dry forest seedling performance, whereas nutrient availability had a strong effect on biomass and growth. Overall, our results highlight the ability of N‐fixing seedlings to take advantage of local soil resource heterogeneity, which may help to explain the dominance of N‐fixing trees in tropical dry forests.more » « lessFree, publicly-accessible full text available September 1, 2026
-
With increased interest in forest restoration comes an urgent need to provide accurate, scalable, and cost‐effective monitoring tools. The ubiquity of smartphones has led to a surge in monitoring apps. We reviewed and assessed monitoring apps found through web searches and conversations with practitioners. We identified 42 apps that (1) automatically monitor indicators or (2) facilitate data entry. We selected the five most promising from the first category, based on their relevance, availability, stability, and user support. We compared them to traditional field techniques in a well‐studied restoration project in Costa Rica. We received further feedback from 15 collaborator organizations that evaluated these in their corresponding field restoration sites. Diameter measurements correlated well with traditional tape‐based measurements (R2 = 0.86–0.89). Canopy openness and ground cover showed weaker correlations to densiometer and quadrat cover measurements (R2 = 0.42–0.51). Apps did not improve labor efficiency but do preclude the purchase of specialized field equipment. The apps reviewed here need further development and validation to support monitoring adequately, especially in the tropics. Estimates of development and maintenance costs, as well as statistics on user uptake, are required for cost‐effective development. We recommend a coordinated effort to develop dedicated restoration monitoring apps that can speed up and standardize the collection of indicators and provide evidence on restoration outcomes alongside a centralized repository of this information.more » « less
-
Forest restoration is increasingly heralded as a global strategy to conserve biodiversity and mitigate climate change, yet long-term studies that compare the effects of different restoration strategies on tree recruit demographics are lacking. We measured tree recruit survival and growth annually in three restoration treatments—natural regeneration, applied nucleation and tree plantations—replicated at 13 sites in southern Costa Rica—and evaluated the changes over a decade. Early-successional seedlings had 14% higher survival probability in the applied nucleation than natural regeneration treatments. Early-successional sapling growth rates were initially 227% faster in natural regeneration and 127% faster in applied nucleation than plantation plots but converged across restoration treatments over time. Later-successional seedling and sapling survival were similar across treatments but later-successional sapling growth rates were 39% faster in applied nucleation than in plantation treatments. Results indicate that applied nucleation was equally or more effective in enhancing survival and growth of naturally recruited trees than the more resource-intensive plantation treatment, highlighting its promise as a restoration strategy. Finally, tree recruit dynamics changed quickly over the 10-year period, underscoring the importance of multi-year studies to compare restoration interventions and guide ambitious forest restoration efforts planned for the coming decades. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.more » « less
-
Abstract Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots.more » « less
-
Assisted restoration interventions drive functional recovery of tropical wet forest tree communitiesChoosing appropriate forest restoration interventions is challenging. Natural regeneration can rapidly facilitate forest recovery in many situations. However, barriers such as dispersal limitation and competition with non-native species can require assisted restoration approaches to facilitate plant community recovery. We used a study that has directly compared the outcomes of tropical wet forest restoration interventions across 11 replicate sites in southern Costa Rica. Within this framework, we examined the functional recovery trajectories of recruiting tree sapling communities across a gradient of restoration interventions including low (natural regeneration), intermediate (applied nucleation), and high (plantation) initial resource-investment, which we compared to remnant reference forest. We collated leaf and stem functional traits for tree species that comprised the bulk of recruiting saplings, then determined how community-weighted trait means and functional diversity metrics changed over a decade across treatments. Results show that assisted restoration approaches (applied nucleation, plantation) sped the development of more functionally diverse tree communities, more than tripling the functional richness (FRic) of recruiting communities when compared to natural regeneration. However, functional dispersion (i.e., the trait range of dominant species) was equivalent across interventions, and between 28 and 44% lower than remnant forest, indicating that increases in FRic under assisted restoration were driven by species recruiting in low abundances (<10 individuals across treatments). Recruits in assisted restoration treatments also had 10–15% tougher, less-palatable leaves, and leaves were even tougher in reference forest, which could be driven by increasing herbivory pressure along the gradient of interventions. Results show that tracking simple metrics such as species richness can mask a more mechanistic understanding of ecosystem recovery that is elucidated by taking a functional trait-driven approach toward evaluating outcomes. For example, our work identified a paucity of dense-wooded species recruiting across restoration interventions, wood density was 11–13% lower in restoration treatments than reference forests, underscoring such species as prime targets for enrichment planting. Overall, findings suggest that assisted restoration can catalyze the functional recovery of naturally recruiting tree communities in landscapes that are slow to recover naturally and highlight the importance of evaluating how different components of functional diversity shift over time to fully understand restoration outcomes.more » « less
-
Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks.more » « less
An official website of the United States government
